Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Journal of diagnostic medical sonography : JDMS : Duplicate, marked for deletion ; 2023.
Article in English | EuropePMC | ID: covidwho-2235787

ABSTRACT

Objective: To analyze the diagnostic accuracy of lung ultrasonography (LUS) and high-resolution computed tomography (HRCT), to detect COVID-19. Materials and Methods: This study recruited all patients admitted to the emergency medicine unit, due to a suspected COVID-19 infection, during the first wave of the COVID-19 pandemic. These patients also who underwent a standardized LUS examination and a chest HRCT. The signs detected by both LUS and HRCT were reported, as well as the sensitivity, specificity, positive predictive value, and negative predictive value for LUS and HRCT. Results: This cohort included 159 patients, 101 (63%) were diagnosed with COVID-19. COVID-19 patients showed more often confluent subpleural consolidations and parenchymal consolidations in lower lung regions of LUS. They also had "ground glass” opacities and "crazy paving” on HRCT, while pleural effusion and pulmonary consolidations were more common in non-COVID-19 patients. LUS had a sensitivity of 0.97 (95% CI 0.92–0.99) and a specificity of 0.24 (95% CI 0.07–0.5) for COVID-19 lung infections. HRCT abnormalities resulted in a 0.98 sensitivity (95% CI 0.92–0.99) and 0.1 specificity (95% CI 0.04–0.23) for COVID-19 lung infections. Conclusion: In this cohort, LUS proved to be a noninvasive, diagnostic tool with high sensitivity for lung abnormalities that were likewise detected by HRCT. Furthermore, LUS, despite its lower specificity, has a high sensitivity for COVID-19, which could prove to be as effective as HRCT in excluding a COVID-19 lung infection.

2.
Ultrasound Med Biol ; 47(12): 3333-3342, 2021 12.
Article in English | MEDLINE | ID: covidwho-1377851

ABSTRACT

Coronavirus disease 2019 (COVID-19) has spread across the world with a strong impact on populations and health systems. Lung ultrasound is increasingly employed in clinical practice but a standard approach and data on the accuracy of lung ultrasound are still needed. Our study's objective was to evaluate lung ultrasound diagnostic and prognostic characteristics in patients with suspected COVID-19. We conducted a monocentric, prospective, observational study. Patients with respiratory distress and suspected COVID-19 consecutively admitted to the Emergency Medicine Unit were enrolled. Lung ultrasound examinations were performed blindly to clinical data. Outcomes were diagnosis of COVID-19 pneumonia and in-hospital mortality. One hundred fifty-nine patients were included in our study; 66% were males and 63.5% had a final diagnosis of COVID-19. COVID-19 patients had a higher mortality rate (18.8% vs. 6.9%, p = 0.04) and Lung Ultrasound Severity Index (16.14 [8.71] vs. 10.08 [8.92], p < 0.001) compared with non-COVID-19 patients. This model proved able to distinguish between positive and negative cases with an area under the receiver operating characteristic (AUROC) equal to 0.72 (95% confidence interval [CI]: 0.64-0.78) and to predict in-hospital mortality with an AUROC equal to 0.81 (95% CI: 0.74-0.86) in the whole population and an AUROC equal to 0.76 (95% CI: 0.66-0.84) in COVID-19 patients. The Lung Ultrasound Severity Index can be a useful tool in diagnosing COVID-19 in patients with a high pretest probability of having the disease and to identify, among them, those with a worse prognosis.


Subject(s)
COVID-19/diagnostic imaging , Lung/diagnostic imaging , Severity of Illness Index , COVID-19/mortality , Emergency Service, Hospital , Female , Hospital Mortality , Humans , Italy , Male , Middle Aged , Point-of-Care Systems , Prognosis , Prospective Studies , SARS-CoV-2 , Ultrasonography
3.
Emerg Med J ; 38(4): 308-314, 2021 Apr.
Article in English | MEDLINE | ID: covidwho-1081663

ABSTRACT

Emilia-Romagna was one of the most affected Italian regions during the COVID-19 outbreak in February 2020. We describe here the profound regional, provincial and municipal changes in response to the COVID-19 pandemic, to cope with the numbers of patients presenting with COVID-19 illness, as well as coping with the ongoing need to care for patients presenting with non-COVID-19 emergencies. We focus on the structural and functional changes in one particular hospital within the city of Bologna, the regional capital, which acted as the central emergency hub for time-sensitive pathologies for the province of Bologna. Finally, we present the admissions profile to our emergency department in relation to the massive increase of infected patients observed in our region as well as the organisational response to prepare for the second wave of the pandemic.


Subject(s)
COVID-19/epidemiology , Disease Outbreaks , Emergency Medical Services/organization & administration , Emergency Service, Hospital/organization & administration , Air Ambulances , COVID-19/therapy , Critical Care/organization & administration , Hospital Restructuring , Hospitals, Urban/organization & administration , Humans , Intensive Care Units/organization & administration , Italy/epidemiology , Operating Rooms/organization & administration , Personal Protective Equipment
4.
Neurol Sci ; 41(12): 3395-3399, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-841441

ABSTRACT

INTRODUCTION: A reduction of the hospitalization and reperfusion treatments was reported during COVID-19 pandemic. However, high variability in results emerged, potentially due to logistic paradigms adopted. Here, we analyze stroke code admissions, hospitalizations, and stroke belt performance for ischemic stroke patients in the metropolitan Bologna region, comparing temporal trends between 2019 and 2020 to define the impact of COVID-19 on the stroke network. METHODS: This retrospective observational study included all people admitted at the Bologna Metropolitan Stroke Center in timeframes 1 March 2019-30 April 2019 (cohort-2019) and 1 March 2020-30 April 2020 (cohort-2020). Diagnosis, treatment strategy, and timing were compared between the two cohorts to define temporal trends. RESULTS: Overall, 283 patients were admitted to the Stroke Center, with no differences in demographic factors between cohort-2019 and cohort-2020. In cohort-2020, transient ischemic attack (TIA) was significantly less prevalent than 2019 (6.9% vs 14.4%, p = .04). Among 216 ischemic stroke patients, moderate-to-severe stroke was more represented in cohort-2020 (17.8% vs 6.2%, p = .027). Similar proportions of patients underwent reperfusion (45.9% in 2019 vs 53.4% in 2020), although a slight increase in combined treatment was detected (14.4% vs 25.4%, p = .05). Door-to-scan timing was significantly prolonged in 2020 compared with 2019 (28.4 ± 12.6 vs 36.7 ± 14.6, p = .03), although overall timing from stroke to treatment was preserved. CONCLUSION: During COVID-19 pandemic, TIA and minor stroke consistently reduced compared to the same timeframe in 2019. Longer stroke-to-call and door-to-scan times, attributable to change in citizen behavior and screening at hospital arrival, did not impact on stroke-to-treatment time. Mothership model might have minimized the effects of the pandemic on the stroke care organization.


Subject(s)
Coronavirus Infections , Neurology/trends , Pandemics , Pneumonia, Viral , Stroke/epidemiology , Stroke/therapy , Betacoronavirus , COVID-19 , Humans , Italy/epidemiology , Prevalence , Retrospective Studies , SARS-CoV-2 , Time-to-Treatment/trends
SELECTION OF CITATIONS
SEARCH DETAIL